Nonholonomic Ricci Flows: II. Evolution Equations and Dynamics

نویسنده

  • Sergiu I. Vacaru
چکیده

This is the second paper in a series of works devoted to nonholonomic Ricci flows. By imposing non–integrable (nonholonomic) constraints on the Ricci flows of Riemannian metrics we can model mutual transforms of generalized Finsler–Lagrange and Riemann geometries. We verify some assertions made in the first partner paper and develop a formal scheme in which the geometric constructions with Ricci flow evolution are elaborated for canonical nonlinear and linear connection structures. This scheme is applied to a study of Hamilton’s Ricci flows on nonholonomic manifolds and related Einstein spaces and Ricci solitons. The nonholonomic evolution equations are derived from Perelman’s functionals which are redefined in such a form that can be adapted to the nonlinear connection structure. Next, the statistical analogy for nonholonomic Ricci flows is formulated and the corresponding thermodynamical expressions are found for compact configurations. Finally, we analyze two physical applications: the nonholonomic Ricci flows associated to evolution models for solitonic pp–wave solutions of Einstein equations, and compute the Perelman’s entropy for regular Lagrange and analogous gravitational systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonholonomic Ricci Flows and Parametric Deformations of the Solitonic pp–Waves and Schwarzschild Solutions

We study Ricci flows of some classes of physically valuable solutions in Einstein and string gravity. The anholonomic frame method is applied for generic off–diagonal metric ansatz when the field/ evolution equations are transformed into exactly integrable systems of partial differential equations. The integral varieties of such solutions, in four and five dimensional gravity, depend on arbitra...

متن کامل

Nonholonomic Ricci Flows: V. Parametric Deformations of Solitonic pp–Waves and Schwarzschild Solutions

We study Ricci flows of some classes of physically valuable solutions in Einstein and string gravity. The anholonomic frame method is applied for generic off–diagonal metric ansatz when the field/ evolution equations are transformed into exactly integrable systems of partial differential equations. The integral varieties of such solutions, in four and five dimensional gravity, depend on arbitra...

متن کامل

Exact Solutions in Gravity, and Symmetric and Nonsymmetric Metrics

We provide a proof that nonholonomically constrained Ricci flows of (pseudo) Riemannian metrics positively result into nonsymmetric metrics (as explicit examples, we consider flows of some physically valuable exact solutions in general relativity). There are constructed and analyzed three classes of solutions of Ricci flow evolution equations defining nonholonomic deformations of Taub NUT, Schw...

متن کامل

Nonholonomic Ricci Flows: IV. Geometric Methods, Exact Solutions and Gravity

In a number of physically important cases, the nonholonomically (nonintegrable) constrained Ricci flows can be modelled by exact solutions of Einstein equations with nonhomogeneous (anisotropic) cosmological constants. We develop two geometric methods for constructing such solutions: The first approach applies the formalism of nonholonomic frame deformations when the gravitational evolution and...

متن کامل

Nonholonomic Ricci Flows: Exact Solutions and Gravity

In a number of physically important cases, the nonholonomically (nonintegrable) constrained Ricci flows can be modelled by exact solutions of Einstein equations with nonhomogeneous (anisotropic) cosmological constants. We develop two geometric methods for constructing such solutions: The first approach applies the formalism of nonholonomic frame deformations when the gravitational evolution and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008